Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Biol Rep ; 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2244480

ABSTRACT

BACKGROUND: Seemingly, the Matrix metalloproteinases (MMPs) play a role in the etiopathogenesis of coronavirus disease 2019 (COVID-19). Here in this study, we determined the association of MMP9 rs3918242, MMP3 rs3025058, and MMP2 rs243865 polymorphisms with the risk of COVID-19, especially in those with neurological syndrome (NS). METHODS: We enrolled 500 patients with COVID-19 and 500 healthy individuals. To genotype the target SNPs, the Real-time allelic discrimination technique was used. To determine serum levels of MMPs, Enzyme-linked immunosorbent assay (ELISA) was exerted. RESULTS: The MMP9 gene rs3918242 and MMP3 gene rs3025058 SNP were significantly associated with increased COVID-19 risk and susceptibility to COVID-19 with NS. The serum level of MMP-9 and MMP-3 was significantly higher in COVID-19 cases compared with the healthy controls. Serum MMP-9 and MMP-3 levels were also higher in COVID-19 subjects with NS in comparison to the healthy controls. The polymorphisms in MMP genes were not associated with serum level of MMPs. CONCLUSION: MMP9 and MMP3 gene polymorphisms increases the susceptibility to COVID-19 as well as COVID-19 with neurologic syndrome, but they probably have no role in the regulation of serum MMP-9 and MMP-3 levels.

2.
Int Immunopharmacol ; 100: 108076, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375975

ABSTRACT

BACKGROUND: Evidence show that Matrix metalloproteinases (MMPs) have been associated with neurological complications in the viral infections. Here in the current investigation, we intended to reveal if MMPs are potentially involved in the development of neurological symptoms in the patients with Coronavirus disease 2019 (COVID-19). METHODS: The levels of MMPs, inflammatory cytokines, chemokines, and adhesion molecules were evaluated in the serum and cerebrospinal fluid (CSF) samples from 10 COVID-19 patients with neurological syndrome (NS) and 10 COVID-19 patients lacking NS. Monocytes from the CSF samples were treated with TNF-α and the secreted levels of MMPs were determined. RESULTS: The frequency of monocytes were increased in the CSF samples of COVID-19 patients with NS compared to patients without NS. Levels of inflammatory cytokines IL-1ß, IL-6, and TNF-α, chemokines CCL2, CCL3, CCL4, CCL7, CCL12, CXCL8, and CX3CL1, MMPs MMP-2, MMP-3, MMP-9, and MMP-12, and adhesion molecules ICAM-1, VCAM-1, and E-selectin were significantly increased in the CSF samples of COVID-19 patients with NS compared with patients without NS. Treatment of CSF-derived monocytes obtained from COVID-19 patients with NS caused increased production of MMP-2, MMP-3, MMP-9, and MMP-12. CONCLUSIONS: Higher levels of inflammatory cytokines might promote the expression of adhesion molecules on blood-CSF barrier (BCSFB), resulting in facilitation of monocyte recruitment. Increased levels of CSF chemokines might also help to the trafficking of monocytes to CSF. Inflammatory cytokines might enhance production of MMPs from monocytes, leading to disruption of BCSFB (and therefore further infiltration of inflammatory cells to CSF) in COVID-19 patients with NS.


Subject(s)
COVID-19/complications , Matrix Metalloproteinases/physiology , Nervous System Diseases/etiology , SARS-CoV-2 , Aged , Chemokines/analysis , Cytokines/analysis , Female , Humans , Intercellular Adhesion Molecule-1/analysis , Male , Middle Aged
3.
Microb Pathog ; 158: 105066, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1283493

ABSTRACT

Neutrophil extracellular traps (NETs) are networks of extracellular chromosomal DNA fibers, histones, and cytoplasmic granule proteins. The release of NET components from neutrophils is involved in the suppression of pathogen diffusion. Development of NETs around target microbes leads to disruption of the cell membrane, eventuating in kind of cell death that is called as NETosis. The very first step in the process of NETosis is activation of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase upon signaling by innate immune receptors. Afterwards, produced Reactive oxygen species (ROS) trigger protein-arginine deiminase type 4, neutrophil elastase, and myeloperoxidase to generate decondensed chromatin and disrupted integrity of nuclear membrane. Subsequently, decondensed chromatin is mixed with several enzymes in the cytoplasm released from granules, leading to release of DNA and histones, and finally formation of NET. Several reports have indicated that NETosis might contribute to the immune responses through limiting the dissemination of microbial organisms. In this review, we discuss recent advances on the role of neutrophils, NETs, and their implications in the pathogenesis of microbial infections. Additionally, the prospective of the NET modulation as a therapeutic strategy to treat infectious diseases are clarified.


Subject(s)
Communicable Diseases , Extracellular Traps , Humans , NADPH Oxidases , Neutrophils , Prospective Studies , Reactive Oxygen Species
4.
Life Sci ; 276: 119437, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1157592

ABSTRACT

In Coronavirus disease 2019 (COVID-19), a decreased number of regulatory T (Treg) cells and their mediated factors lead to a hyperinflammatory state due to overactivation of the inflammatory cells and factors during the infection. In the current study, we evaluated the Nanocurcumin effects on the Treg cell population and corresponding factors in mild and severe COVID-19 patients. To investigate the Nanocurcumin effects, 80 COVID-19 patients (40 at the severe stage and 40 at the mild stage) were selected and classified into Nanocurcumin and placebo arms. In both the Nanocurcumin and placebo groups, the Treg cell frequency, the gene expression of Treg transcription factor forkhead box P3 (FoxP3), and cytokines (IL-10, IL-35, and TGF-ß), as well as the serum levels of cytokines were measured before and after treatment. In both mild and severe COVID-19 patients, Nanocurcumin could considerably upregulate the frequency of Treg cells, the expression levels of FoxP3, IL-10, IL-35, and TGF-ß, as well as the serum secretion levels of cytokines in the Nanocurcumin-treated group compared to the placebo group. The abovementioned factors were remarkably increased in the post-treatment with Nanocurcumin before pre-treatment conditions. By contrast, it has been observed no notable alteration in the placebo group. Our findings revealed the SinaCurcumin® effective function in a significant increase in the number of Treg cells and their mediated factors in the Nanocurcumin group than in the placebo group in both mild and severe patients. Hence, it would be an efficient therapeutic agent in rehabilitating COVID-19 infected patients.


Subject(s)
COVID-19 Drug Treatment , Curcumin/pharmacology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , COVID-19/immunology , COVID-19/virology , Cytokines/drug effects , Cytokines/immunology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukins/immunology , Male , Middle Aged , Nanomedicine/methods , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/immunology
5.
J Cell Physiol ; 236(7): 5325-5338, 2021 07.
Article in English | MEDLINE | ID: covidwho-995973

ABSTRACT

In novel coronavirus disease 2019 (COVID-19), the increased frequency and overactivation of T helper (Th) 17 cells and subsequent production of large amounts of proinflammatory cytokines result in hyperinflammation and disease progression. The current study aimed to investigate the therapeutic effects of nanocurcumin on the frequency and responses of Th17 cells in mild and severe COVID-19 patients. In this study, 40 severe COVID-19 intensive care unit-admitted patients and 40 patients in mild condition were included. The frequency of Th17 cells, the messenger RNA expression of Th17 cell-related factors (RAR-related orphan receptor γt, interleukin [IL]-17, IL-21, IL-23, and granulocyte-macrophage colony-stimulating factor), and the serum levels of cytokines were measured in both nanocurcumin and placebo-treated groups before and after treatment. A significant decrease in the number of Th17 cells, downregulation of Th17 cell-related factors, and decreased levels of Th17 cell-related cytokines were found in mild and severe COVID-19 patients treated by nanocurcumin compared to the placebo group. Moreover, the abovementioned parameters were significantly decreased in the nanocurcumin-treated group after treatment versus before treatment. Curcumin could reduce the frequency of Th17 cells and their related inflammatory factors in both mild and severe COVID-19 patients. Hence, it could be considered as a potential modulatory compound in improving the patient's inflammatory condition.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Immunomodulation/drug effects , Nanoparticles/therapeutic use , Th17 Cells/drug effects , Adult , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Nanoparticles/administration & dosage , SARS-CoV-2/drug effects , Severity of Illness Index , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/virology , Th17 Cells/metabolism
6.
Int Immunopharmacol ; 89(Pt B): 107088, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-880513

ABSTRACT

BACKGROUND: As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID-19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. METHOD: Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1ß, IL-6, TNF-α and IL-18 were assessed by Real-time PCR and ELISA, respectively. RESULT: Our primary results indicated that the mRNA expression and cytokine secretion of IL-1ß, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1ß gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. CONCLUSION: Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1ß and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.


Subject(s)
COVID-19 Drug Treatment , Curcumin/therapeutic use , Cytokines/blood , SARS-CoV-2 , Adult , Aged , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , Cytokines/genetics , Double-Blind Method , Female , Humans , Male , Micelles , Middle Aged , Nanotechnology , RNA, Messenger/analysis , Young Adult
7.
Int Immunopharmacol ; 89(Pt B): 107082, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-872153

ABSTRACT

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) is responsible for recent ongoing public health emergency in the world. Sharing structural and behavioral similarities with its ancestors [SARS and Middle East Respiratory Syndrome (MERS)], SARS-CoV-2 has lower fatality but faster transmission. We have gone through a long path to recognize SARS and MERS, therefore our knowledge regarding SARS-CoV-2 is not raw. Various responses of the immune system account for the wide spectrum of clinical manifestations in Coronavirus disease-2019 (COVID-19). Given the innate immune response as the front line of defense, it is immediately activated after the virus entry. Consequently, adaptive immune response is activated to eradicate the virus. However, this does not occur in every case and immune response is the main culprit causing the pathological manifestations of COVID-19. Lethal forms of the disease are correlated with inefficient and/or insufficient immune responses associated with cytokine storm. Current therapeutic approach for COVID-19 is in favor of suppressing extreme inflammatory responses, while maintaining the immune system alert and responsive against the virus. This could be contributing along with administration of antiviral drugs in such patients. Furthermore, supplementation with different compounds, such as vitamin D, has been tested to modulate the immune system responses. A thorough understanding of chronological events in COVID-19 contributing to the development of a highly efficient treatment has not figured out yet. This review focuses on the virus-immune system interaction as well as currently available and potential therapeutic approaches targeting immune system in the treatment of COVID-19 patients.


Subject(s)
COVID-19/immunology , Immunotherapy , SARS-CoV-2 , Adaptive Immunity , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Humans , Immune System/drug effects , Immunity, Innate , Virus Internalization , Vitamin D/pharmacology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL